Новая технология сделает бионефть настоящим топливом

Бионефть
Фото предоставлено Российским научным фондом

Российские ученые разработали технологию, которая позволит использовать бионефть в качестве компонента моторного топлива.

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Applied Catalysis B: Environmental. В частности, ученые выяснили, что обработка природного минерала галлуазита кислотой позволяет улучшить его текстурные свойства и кислотность – характеристики, которые важны при использовании этого минерала в качестве носителя катализаторов, применяемых для переработки бионефти или ее компонентов.

Катализаторы на основе модифицированного таким образом галлуазита позволяют в три раза эффективнее, по сравнению с аналогом на основе исходного минерала, удалять кислород из бионефти растительного происхождения. Затем такую бионефть можно использовать в качестве компонента различных видов моторного топлива и нефтехимических полупродуктов.

Отходы деревообрабатывающей промышленности — опилки, щепу и другие — перерабатывают в жидкий продукт — лигноцеллюлозную бионефть, которая представляет собой смесь воды и углеводородов. Из-за того, что в углеводородной части бионефти содержится до 60% кислородсодержащих соединений, использовать ее в качестве компонента топлив невозможно.

Это объясняется низкой теплотворной способностью бионефти и ее нестабильностью при хранении. Чтобы бионефть все-таки стала пригодной для применения в качестве топлива, ее углеводородную часть подвергают гидрооблагораживанию в присутствии катализаторов, то есть удалению кислородсодержащих компонентов.

В качестве катализаторов таких процессов могут использоваться системы на основе благородных металлов, в частности, содержащие рутений. Они высокоактивны, устойчивы к отложению кокса и в меньшей степени подвержены спеканию под действием высоких температур.

Однако при переработке такого сырья с высоким содержанием воды (до 30%) — как бионефть — катализаторы на основе благородных металлов могут потерять свою активность из-за перестройки структуры частиц активного компонента или его вымывания с поверхности носителя. Кроме того, негативное влияние на каталитические свойства может оказывать и вода, образующаяся в ходе самого гидрооблагораживания. Таким образом, на сегодняшний день нет эффективных и стабильных катализаторов для облагораживания бионефти.

Ученые из Российского государственного университета нефти и газа (НИУ) имени И. М. Губкина и Московского государственного университета имени М. В. Ломоносова (Москва) предложили использовать в качестве носителя катализаторов для гидрооблагораживания глинистый минерал с трубчатой структурой — галлуазит.

Применительно к переработке бионефти у алюмосиликатных нанотрубок галлуазита есть один существенный недостаток — низкая кислотность, которая отрицательно сказывается на активности катализаторов на их основе. Авторы установили, что предварительная обработка алюмосиликатных нанотрубок галлуазита кислотой позволяет значительно улучшить текстурные и кислотные свойства носителей и катализаторов на их основе.

Авторы проследили, как меняются физико-химические свойства алюмосиликатных нанотрубок в зависимости от времени их обработки раствором серной кислоты в различных условиях. Это позволило определить оптимальные условия деалюминирования, при которых сохраняется трубчатая структура галлуазита, увеличивается удельная площадь поверхности и размер внутренней полости, а также повышается кислотность.

Исследователи использовали обработанный кислотой галлуазит в качестве носителя для рутений-содержащих катализаторов. Полученные образцы протестировали в процессе гидрооблагораживания модельного сырья, содержащего гваякол — один из наиболее типичных компонентов лигноцеллюлозной бионефти. Эксперимент показал, что катализаторы на основе предварительно обработанного кислотой (деалюминированного) галлуазита в три раза эффективнее аналогов, нанесенных на «обычный» минерал.

«Наша работа — это исследование, которое показывает возможность управлять составом, текстурными характеристиками и кислотностью природных наноматериалов с трубчатой структурой и использовать их в качестве носителей активной фазы катализаторов для гидрогенизационных процессов нефтехимии и нефтепереработки. Результаты работ могут найти широкое применение при создании катализаторов для крупнотоннажных процессов, в частности, для получения компонентов моторных топлив и ценных полупродуктов нефтехимии из возобновляемого сырья. Мы продолжим развивать направление по созданию новых катализаторов для переработки альтернативных видов углеродсодержащего сырья в продукты с добавленной стоимостью», — рассказал руководитель проекта Александр Глотов, ведущий научный сотрудник Российского государственного университета нефти и газа (НИУ) имени И. М. Губкина.